Chemistry Letters 1995

Synthesis and Structure of a New Tripodal Polypyridine Copper(II) Complex That Enables to Recognize a Small Molecule

Manabu Harata, Koichiro Jitsukawa,* Hideki Masuda,* and Hisahiko Einaga Department of Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466

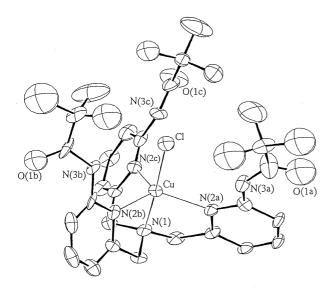
(Received October 24, 1994)

With a view to constructing an artificial metalloenzyme model complex which can recognize and capture a small molecule, a new tripodal ligand, tris(6-pivaloylamino-2-pyridylmethyl)amine, and its mononuclear copper(II) complex has been synthesized, and they were characterized by ¹H-NMR and positive-ion FAB mass spectra, cyclic voltammetry and X-ray structure analysis.

The enzymatic reactions in biological systems are initiated with the formation of enzyme-substrate complexes, which are achieved by the presence of an appropriate vacant space and of an accurate molecular recognition system for the substrates.¹⁻³ The relevant arrangement of bulky hydrophobic tert-butyl and/or phenyl groups and a combination of non-covalently interacting groups, such as hydrogen bonding, electrostatic bonding, hydrophobic bonding, and coordinative bonding, are essential for host-guest chemistry that accompanies the molecular recognition; it leads to the construction of an artificial enzyme model. Here we report the synthesis of a new tripodal tetradentate ligand, tris(6pivaloylamino-2-pyridylmethyl)amine (TPPA), and the structural characterization of its copper(II) complex, which has some noncovalent interaction sites. These interaction sites play a specific function for (i) the formation of a stable tetradentate chelate complex with metal ion, (ii) the fixation of an externallyintroduced small molecule by three hydrogen-bonding NH groups, (iii) the binding of the small molecule in an appropriate coordination sphere, and (iv) prevention of dinuclear complex

TPPA was prepared from 2-amino-6-methylpyridine 1 in five steps, as shown in Scheme 1. To a CH₂Cl₂ (100 mL) solution of 1 (100 mmol) was added dropwise pivaloyl chloride (110 mmol) in the presence of triethylamine (130 mmol), and then stirred at room temperature for 2 h. The crude product obtained was purified by recrystallization with ether to give 2 (83.6 % yield). 2 (55 mmol) was brominated with NBS (27.5 mmol) and catalytic amount of AIBN in CCl4 under a nitrogen atmosphere. The reaction mixture of monobromide 3, dibromide (by-product), and unreacted 2 was separated by silica gel column chromatography with a hexane/AcOEt eluate. The compound 3 (22.6 mmol) was treated with potassium phthalimide (22.6 mmol) in DMF solution (150 mL) under reflux for 30 min to give 4. The ethanol solution (100 mL) of 4 (10 mmol) and hydrazine monohydrate (10 mmol) was refluxed for 2 h to give the primary amine product 5 (74.7 % yield). The amine 5 (4 mmol) was coupled with an excess of the bromide 3 in CHCl₃ solution (50 mL) in the presence of triethylamine (12 mmol) at 50 °C for 3 h. After the usual workup, the transparent needle-like crystal of 6 (TPPA)⁴ was isolated (30.2 % yield) through recrystallization from CHCl3/AcOEt/hexane (1:1:10) solution.

The copper(II) complex with TPPA was prepared by the addition of TPPA (1.5 x 10^{-2} mmol) to an acetone solution (2 mL) of anhydrous CuCl₂ (1.5 x 10^{-2} mmol) at room temperature, which resulted in an immediate color change from yellow to


Reagents: i, Me₃CCOCl, Et₃N, CH₂Cl₂; ii, NBS, AIBN, CCl₄; iii, Ft =
$$\begin{pmatrix} 0 \\ N \\ K \end{pmatrix}$$
, DMF iv, H₂NNH₂:H₂O, EtOH; v, 3, Et₃N, CHCl₃

Scheme 1.

green. The resulting solution was treated by NaClO₄ $(1.65 \text{ x} 10^{-2} \text{ mmol})$. After the addition of methanol (1 mL) and water (1 mL), the solution was allowed to stand for a few days in a refrigerator to give a yellowish green crystal 7 (83.0 % yield).

The X-ray crystal structure established for [Cu(tppa)Cl]ClO₄ 7,6 as shown in Figure 1, revealed that the coordination environment around the central copper atom is an axiallycompressed trigonal-bipyramid with three pyridine nitrogen atoms in the equatorial positions (Cu - N(2a) = 2.148(5), Cu -N(2b) = 2.137(5), Cu - N(2c) = 2.314(6) Å) and with tert-amine nitrogen (Cu - N(1) = 1.955(5) Å) and chloride atoms (Cu - Cl = 2.206(2) Å) in the axial positions. Such a structural geometry is also supported from the well-separated d-d band in the absorption spectrum (740 and 860 nm). The copper atom is displaced by 0.40 Å toward the chloride atom from the mean plane defined by three pyridine-nitrogen atoms. All three N-H vectors directed toward the chloride anion ($Cl \cdot \cdot \cdot N(3a) = 3.19$, $Cl \cdot \cdot \cdot N(3b) = 3.15$, $Cl \cdot \cdot \cdot N(3c) = 3.24 \text{ Å}$), which suggests the formation of hydrogen bonding with the chloride anion. The three tert-butyl groups approach one another and form a hydrophobic space in such a manner that they protect the chloride atom, which implies that the copper coordination sphere surrounded by three pivaloylamino groups can hold a relevant-sized molecule such as chloride anion.

The complex exhibits a very interesting one-electron redox reversible cyclic voltammogram in CH₃CN/0.1 M (n-Bu₄N)BF₄.

Figure 1. ORTEP representation of the structure of the [Cu(tppa)Cl]⁺ cation (7) with atom-labeling scheme. Thermal ellipsoids are drawn at the 50 % probability level.

The observed redox potential is +0.225 V vs. Ag/AgCl (or +0.447 V when converted to the NHE scale by the addition of +0.222 V), which is much significantly higher than that observed for [Cu(tpa)Cl]PF₆ (-0.39 V vs. NHE).⁷ This high anodic potential value may have been caused by the unique coordination geometry and sphere, which is favourable for the Cu(I) complex and leads to a mild affinity for dioxygen molecule.⁸

Current efforts are being devoted to further exploring the recognition ability of 7 with various small guest molecules by use of convergent non-covalent interaction groups.

Thanks are due to the Instrument Center, the Institute for Molecular Science, for assistance in obtaining the positive-ion FAB mass spectrum. This work was supported by a Grant-in-Aid for Specially Promoted Research (No. 04101003) from the

Ministry of Education, Science and Culture, Japan and partly by the Ciba Geigy Foundation (Japan) for the Promotion of Science.

References and Notes

- B. Albert, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, *Molecular Biology of the Cell*, 3rd ed., Garland Publishing, New York, 1994, p.89.
- 2 E. Frieden, J. Chem. Educ., 52, 754 (1975).
- W. P. Jencks, Adv. Enzymol. Relat. Areas Mol. Biol., 43, 219 (1975).
- 4 Physical and spectroscopic data for 6: Positive-ion FAB mass m/z = 588 [TPPA + H]⁺ and 610 [TPPA + Na]⁺. Anal. Calcd for C₃₃H₄₅N₇O₃: C, 67.44; H, 7.72; N, 16.68;. Found: C, 67.24; H, 7.61; N, 16.60; ¹H-NMR: δ (CD₃CN) 8.18 (s, 3H, N-H), 7.99 (d, J 7.8 Hz, 3H, 5-H(py)), 7.70 (t, J 7.8 Hz, 3H, 4-H(py)), 7.33 (d, J 7.8 Hz, 3H, 3-H(py)), 3.74 (s, 6H, -CH₂-), 1.27 (s, 27H, t-Bu).
- Physiscal and spectroscopic data for 7: Positive-ion FAB mass m/z = 685 [Cu(tppa)Cl]⁺; Anal. Calcd for C₃₃H₄₅N₇O₇CuCl₂: C, 50.40; H, 5.78; N, 12.47; Cl, 9.02. Found for crystals of 7: C, 50.30; H, 5.65; N, 12.55; Cl, 8.98
- 6 Crystal data for 7: C33H45N7O7CuCl2, $M_W = 786.30$, orthorhombic, space group Pccn; a = 11.601(2), b = 35.355(5), c = 18.401(2) Å, V = 7547.1 Å³, Z = 8, $D_C = 1.384$ g cm⁻³; Mo-K α ($\lambda = 0.71073$ Å); $\mu = 8.09$ cm⁻¹, $3 < 2\theta < 55^\circ$. Intensity data collected at room temperature on an Enraf-Nonius CAD4-EXPRESS four-circle diffractometer; structure solved and refined using SDP-MolEN program system, absorption correction was applied by DIFABS. 11080 Unique reflections of which 5486 $[I > 3\alpha(I)]$ are observed. The structure was solved by the heavy-atom method and refined anisotropically. Hydrogen atoms were included in the calculation, but they were not refined. Final R and R_W factors were 0.0818 and 0.1158, respectively.
- 7 K. D. Karlin, J. C. Hayes, S. Juen, J. P. Hutchinson, and J. Zubieta, *Inorg. Chem.*, 21, 4106-4110 (1982).
- 8 M. Harata, K. Jitsukawa, H. Masuda, and H. Einaga, *J. Am. Chem. Soc.*, in press (1994).